Real-Time Operating Systems

ELEX 7820 Lecture Notes — Fall 2017

Chapter 6 - Real-Time Operating Systems

Definition:

An operating system (0OS) is r@ that is loaded into the processor, along with
application programs, at boot time. It then manages all the applications, determining which

applications should run, in what order, and for what allotted time. Also, it manages the

sharing of resources, namely CPU, memory, and peripherals.

Applications can access the Operating System by calling

Application Programming Interface (API) functions.

Compare OS to No-OS

0S

No-OS (e.g. Super Loop)

helps manage complex system (when number of
concurrent tasks is greater than “a few”)

less modular

provides scheduling

does not

provides multi-tasking

does not

processes can run at non-integer multiple rates

cannot easily have arbitrary rates

scalable

less so

takes more CPU cycles (due to overhead)

can achieve fastest speed (due to no overhead)

uses more memory (due to kernel)

uses the least memory (since no kernel)

can easily add more tasks

harder to do so

can easily add more devices (drivers)

harder to do so

easier to maintain if an off-the-shelf OS (cf. custom OS)

may have a license fee

less migratable (due to less h/w abstraction)

Windows XP ~ 1.5 Gbyte
‘Windows Vista ~ 20 Gbyte + 15 Gbyte free | easier to debug®
Windows 7 ~ 16-20 Gbyte
‘Windows 8 ~ 16-20 Gbyte
Windows 10 ~ 16-20 Gbyte The “kernel” provides:
1. scheduling of tasks
2. synchronization of tasks
1 Unless program is very complicated (then should have used an OS anyway). 3. interrupt handling/pre-emption
0 context switching
B.C.I.T. DNR (save-restore)
4. multi-tasking

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Definition:

A real-time operating system (RTOS) is an operating system that facilitates application
programs to meet real-world timing constraints.

It must include multi-tasking and pre-emption.

Compare RTOS to OS

RTOS oS

small kernel (i.e., small memory footprint) not important

extensible: memory footprint defined by only what the user needs | less so

modular less so
must meet timing constraints no
low and predictable interrupt latency no

reduced time when interrupts disabled
e.g. during context switching

. . N . . less so
e.g. during high-priority interrupt service routine
time has an upper bound
multi-tasking yes
pre-emptible some are

Compare Off-the-Shelf RTOS to Custom RTOS

Off-the-Shelf RTOS Custon/ RTOS
L4
not as efficient highest@
technical support available no
easier to maintain less so, and lots of up-front work to
make RTOS

B.C.I.T. DNR 6-2

ELEX 7820 Lecture Notes — Fall 2017

Real-Time Operating Systems

Firmware Architectures for Real-Time Embedded Systems

super loop: main task with polling and calls to functions

1.
2. background task with event-based interrupts: interrupts cause their corresponding —
interrupts service routines to run
3. multi-tasking with RTOS —
Super-Loop
Code: main (infinite loop)
if(A-D ready)
call procA-D
iT(DA ready)
call procD-A
Idle
timer tick
main e e - A-D e o D-A e e o Idle e e o
A
1
|
|

timer timeouts (periodic)

fs = sub-multiple of timer rate (or equal)

B.C.I.T. DNR

Real-Time Operating Systems

Background Task with Event-Based Interrupts

Code:

jump back

ISR 3

ISR 2

ISR1

“background task”

B.C.I.T.

main (infinite loop)

Idle

2

2222

P

\

/N

AW

ISR1

ELEX 7820 Lecture Notes — Fall 2017

ISR 2

Return

P

2

DNR

Return

™\

ISR 3

Return

222222

Idle —_—

time

6-4

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

RTOS Concepts

Task

Basic unit of programming that is under control of an OS. A structure called a TCB (Task Control Block) is
used to manage the task.

Task Name

Task Type
Task Status = usually not on stack

Task Priority
Task Address

P Resume Address
Task State = can be located on stack

/ etc

_

Multi-Tasking

In general, a CPU executes one instruction at a time. Via shared use of the CPU, multiple tasks can be
effectively run “simultaneously”

Scheduling

Tasks in a multi-tasking program need to be scheduled in some fashion to share the CPU resource.

There are three basic methods of multi-task scheduling:

1. cooperative — In this method, if a task has finished running or is waiting for some event, it
voluntarily relinquishes control of the processor so that other tasks can run. The tasks are, in
general, “non-real-time” tasks.

2. time-sharing — In this method, each task receives a slice of time to use the CPU. A task is forced

to relinquish control of the processor once it has run for its allotted time. The tasks share the
CPU resource. The tasks are, in general, “non-real-time” tasks.

B.C.I.T. DNR 6-5

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Co-Operative Scheduling

Task relinquishes control only when done or if waiting for a resource to free up
or become ready. There is no idling.

Task 4

A
Task 3 needs
to wait for

aresource

Task 3 |:|
TTask 2 done TTask 2 done

Task 2
TTask 1 done TTask 1done
v
Task 1
—
time
Time-Sharing Scheduling
Task relinquishes control even if not finished or keeps control to end of time-
slice even if idle.
Task 4
A A
Task 3 done
y
Task 3 Idle
T etc T k inefficient
Task 2
Task 1 relinquishes T
control v
Task 1
A A A A A A A A A time

periodic timer tick

Period big enough so that context switch time not significant, but small enough
to maintain some semblance of “simultaneous” tasks.

B.C.I.T. DNR 6-6

ascending
priority

Real-Time Operating Systems

ELEX 7820 Lecture Notes — Fall 2017

Pre-Emptive Scheduling (c2o000 nomenclature is shown)

Task actually called “threads”in c2oo0 parlance
ASRS (“Task”is a type of thread in c2000)

post3 rtn
HWI 2 OIS
(highest)

HWI 1 N

/

SWI post(&swi2) ;

SWI 3 EEEEL

SWI 2 @||||| [T IIT1111

F
[T ITT T

rtn

SWI 1

™~ y
\>UIIIIIIII [T 19

rtn
MAIN [I#

IDLE [CIENST T T I T I IITTTTIT]

(lowest)

B.C.I.T. DNR

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Texas Instruments RTOS

Called “SYS/BIOS” (formerly called “DSP/BIOS)

Itis:

It has:

It can:

It includes:

B.C.I.T.

no license fee
fully-supported by TI

a pre-emptive, multi-threading real-time operating system

a scalable, real-time kernel
0 consumes only the memory space required to meet your use
low interrupt latency

g

schedule tasks where the user has set up their priorities
set up timer-based periodic threads
set up interrupt-driven threads

configuration control
0 e.g. helps user allocate memory sections
0 e.g.sets upinterrupt table
0 e.g.sets up start-up sequence
real-time scheduler
0 schedules your pre-emptive threads
real-time communication
O facilitates two-way communication between your tasks
= synchronization:
e control order of execution
e control access to shared resource, e.g. data buffer
0 facilitates two-way communication between your application and PC host
real-time analysis
0 vyour application can run unimpeded while debug data is displayed

DNR 6-8

Real-Time Operating Systems

ELEX 7820 Lecture Notes — Fall 2017

Definition:

A thread (in Tl parlance) is any independent stream of instructions executed by the processor.

Your application is a collection of threads each of which performs a modularized function.

Types of Threads in SYS/BIOS

Thread
Acronym

Thread

Description

HWI

Hardware Interrupt

triggered by hardware interrupt:
0 e.g. A-D result ready, external event, etc
always runs to completion
context saved on system stack
could be interrupted by another HWI (only if interrupts were
re-enabled by original HWI)

SWI

Software Interrupt

triggered programmatically:
O i.e., by calling APl such as “post”

always runs to completion
O but can be interrupted by HWI or pre-empted by
another SWI
context saved on system stack

TSK

Task

triggered programmatically
does not have to run to completion
O can be blocked until resource available
0 can be interrupted by HWI or pre-empted by SWI
context saved on separate stack (one per task)
inter-task communication and synchronization available via:
0 semaphores
0 events
O mailboxes

IDL

Idle (Background Task)

one continuous loop
can be interrupted by HWI or pre-empted by SWI or TSK

B.C.I.T.

DNR 6-9

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Priorities of Threads in SYS/BIOS

B.C.I.T. DNR 6-10

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Choosing Which Type of Thread to Use for What Part of Your Application

=>» use for most critical response time to real-time events

use to perform “follow-up” activity to HWI
SWI can be started by HWI calling “post” API

v ¥

=> use if there are complex interdependencies and data sharing
requirements
0 TSKs have synchronization APIs available to use
=>» “pend”ing TSK can be unblocked by calling an API to “post” a
“semaphore”

=>» infinite loop — use for background, low-priority, non-real-time work
0 e.g. housekeeping
use for transferring data to host, e.g. for debug and development

v v

use for low power modes if desired

B.C.I.T. DNR 6-11

Real-Time Operating Systems

Task States?

ELEX 7820 Lecture Notes — Fall 2017

State Description C Code Name
READY The task is scheduled for execution, but not yet running. Task_Mode_READY
RUNNING The task is executing. Task_Mode_RUNNING
BLOCKED The task is not allowed to execute until particular event occurs. Task_Mode_BLOCKED
TERMINATED | The task has been ended and does not execute again. Task_Mode_TERMINATED

READY

Task State Transitions?

green = transitions via API’s
red = transitions via RTOS

AN AN

RUNNING

2 There is also an INACTIVE state, but we will not consider it.
3 Not shown: API’s Task_yield() (RUNNING-to-READY transition) and Task_sleep() (RUNNING-to-BLOCKED

transition)

B.C.I.T.

DNR

BLOCKED

6-12

enum#:

w N O -

Real-Time Operating Systems ELEX 7820 Lecture Notes — Fall 2017

Hypothetical Example for Choosing Which Type and Priority of Threads to Use

Assumptions:

e on-board A-D is triggered once every 10 psec by on-board timer

e when there are 128 samples collected, a 128-point FFT is computed, then the magnitude-
squared of each bin is computed

e each bin is searched for a signal that exceeds some threshold and if so turns on green LED

e on-board temperature sensor is checked once in a while to ensure the processor is not
overheated; if it is, turn on red LED

e there is a numerical keypad which generates an external interrupt each time a key is pressed —
the digit pressed indicates to which radio frequency band to tune the analog front-end

Timer
:|red LED
in
A-D
f jgreen LED
SPI
VCO T
1 2 3
VT 4 5 6
7 8 9 keypad
0
DA €

B.C.I.T. DNR 6-13

